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Abstract

The shape optimization of the plate-fin type heat sink with an air deflector is numerically performed to minimize the pressure loss
subjected to the desired maximum temperature and geometrical constraints. A function evaluation using the FVM, in general, is required
much computational costs in fluid/thermal systems. Thus, global approximate optimization techniques have been introduced into the
optimization of fluid/thermal systems. In this study, the Kriging method, which is one of the metamodels, associated with the compu-
tational fluid dynamics (CFD) is used to obtain the optimal solutions. The Kriging method can dramatically reduce a computational cost
by 1/6 times compared to that of the SQP method so that its efficiency can be validated. The results also show that when the temperature
rise is less than 40 K, the optimal design variables are B1 = 2.44 mm, B2 = 2.09 mm, and t = 7.58 mm.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat sinks have been generally used to control heat gen-
erated in electronic equipments effectively. It is true that an
undesirable phenomenon such as increasing in the pressure
loss commonly takes place in the plate-fin type heat sinks
which fins are attached to the plate in order to enhance
the heat transfer rate. Thus, high performance of heat sinks
can be acquired through the design optimization which
maximizes heat transfer and minimizes pressure drop.

Performance analysis and optimization of plate-fin type
heat sinks have been performed for many years [1,2]. How-
ever, they have proposed the correlation equations for the
design variables by considering only the flow and thermal
characteristics of them.

In recent years, the use of commercial CFD codes for
analyzing the flow and thermal fields in industrial applica-
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tions has been dramatically increased due to their advanced
computational capacity and analytic algorithm. In addi-
tion, many optimization techniques have been developed
to obtain the optimal solutions. Therefore, much attention
has been paid to the optimization of fluid/thermal systems
by combining the CFD and optimization algorithm [3,4].
However, high computational cost for function evaluation
and the occurrence of numerical noise are commonly con-
fronted in fluid/thermal systems. Thus, a way to overcome
the above-mentioned problems is to construct the approx-
imated optimization techniques. These approximations are
called ‘‘metamodels’’ which means a model of the model
and it can effectively carry out the optimization of fluid/
thermal systems.

A number of metamodeling techniques such as response
surface models (RSM) [5], Kriging method [6], multivariate
adaptive regression spline (MARS) [7], and radial basis
function (RBF) [8] have been developed and applied to
engineering applications. Among them, the Kriging
method has been gaining attention recently because it offers
the best linear unbiased estimator (BLUE). This method,
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Nomenclature

B1, B2 base- and lower-part of fin width [m]
C1, C2, C3 empirical constants in the k–e model
dk distance between xi

k and x
j
k

f(x) linear function of design variables x

f̂ ðxÞ Kriging estimation of f(x)
gi acceleration of gravity [m/s2]
gj(x) inequality constraints
h fin height [m]
hv length of air deflector [m]
H height of heat sink (=h + t) [m]
k turbulent kinetic energy [m2 s2]
ks thermal conductivity of solid [W/m K]
L length of heat sink [m]
ns number of sampling points
ndv number of design variables
P pressure [Pa]
DP pressure drop [Pa]
Pr Prandtl number
Q dissipated heat [W]
r(x) correlation vector
R correlation matrix of Kriging

R(xi,xj) correlation function between xi
k and x

j
k

t basement thickness of heat sink [m]
T, T 0 mean and fluctuating temperatures [K]
DT temperature rise [K]
uj; u0j mean and fluctuating velocities [m/s]
W width of heat sink [m]
x, y, z Cartesian coordinates [m]
x design variable vector
y(x) objective function
ŷðxÞ least square estimator of y(x)
z(x) departure of Kriging
b constant vector of Kriging
~b generalized least square estimator of b
e dissipation rate of k [m2/s3]
l, lt viscosity and eddy viscosities [N s/m2]
hj thermal resistance [K/W]
h ¼ ðh1; . . . ; hndv

Þ correlation coefficients of Kriging
q density [kg/m3]
rk, re turbulent Prandtl and Schmidt number for k

and e
r2 variance
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one of the interpolation methods, does not create the
estimated error and then is adequate to the model of com-
puter experiments. Additionally, the Kriging method has a
merit that an assumption of the order of the approximate
function for optimization is not needed so that it is superior
to general RSM.

In the present study, the optimal shape of plate-fin type
heat sink with air deflector (or vortex generator) is
obtained numerically by means of the Kriging method. In
addition, in order to ensure the efficiency and reliability
of the Kriging method for the optimal solutions, a compar-
ison with sequential quadratic programming (SQP)
method, which is one of local optimization strategies, is
performed.

2. Kriging method

Kriging was conducted after Dr. D.G. Krige’s work on
the Rand gold deposit, in southern Africa [9]. Cressie [10]
has introduced several Kriging techniques and he used
them in predicting the value of a possible observation of
a spatially distributed variable such as a mine grade, a soil
characteristic, rain fall, gene frequency, or image sequence
coding. Recently, the Kriging method was introduced for
the design and analysis of computer experiments (DACE)
by Sacks et al. [6]. This is used for fitting the model of
the deterministic output to the realization of random pro-
cesses for predicting efficiency and performed for the mul-
tidisciplinary design optimization (MDO) of the field of
mechanics. Giunta [11] performed a preliminary investiga-
tion into the use of Kriging for the multidisciplinary design
optimization of a high speed civil aircraft. Booker [12] used
the Kriging to study the aero-elastic and dynamic response
of a helicopter rotor. Recently, Ryu et al. [13] studied on
the intake system to reduce the noise via the Kriging
method. The Kriging method uses spatial correlation infor-
mation and estimates the analysis results in the sampling
points.

2.1. Mathematical model

Kriging is formulated as a combination of a linear
regression model and departures, i.e.,

yðxÞ ¼ f ðxÞ þ zðxÞ; ð1Þ

where y(x) is the unknown function of interest of design
variable x, f(x) a known linear function of x, and z(x)
the realization of a stochastic with mean zero and variance
r2, and nonzero covariance.

The covariance matrix of z(x) is represented by

Cov½zðxiÞ; zðxjÞ� ¼ r2R½Rðxi; xjÞ�; i; j ¼ 1; . . . ; ns; ð2Þ

where R is a correlation matrix with diagonal of 1 (one)
and R(Æ, Æ) is the correlation function between any two
points xi and xj of ns sampled points. So, R(Æ, Æ) reflects
the association of the outputs generated by computer
code and is specified by the users [14]. The following
Gaussian correlation function is used to obtain it in this
study,
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Rðxi; xjÞ ¼
Yndv

k¼1

exp �hkjxi
k � x

j
kj

2
h i

. ð3Þ

In Eq. (3), optimal correlation coefficients, h ¼ ðh1; . . . ;
hndv
Þ, on the design space ½0; 1�ns is estimated by using a

genetic algorithm.
Another term of interest is the correlation vector, r(x),

between observed points x1; . . . ;xns and an unobserved
point x. This can be expressed as follows:

rðxÞ ¼ r½Rðx; xiÞ� ¼ r½Rðx; x1Þ; . . . ;Rðx; xnsÞ�. ð4Þ
Fig. 1. Schematic configuration of the heat sink with air deflector.
2.2. Kriging estimator

Consider the following linear predictor of y(x) at an
untried x:

ŷðxÞ ¼ c0ðxÞy. ð5Þ
We can replace y by the corresponding random quantity of
Y ¼ ½Y ðx1Þ; . . . ; Y ðxnsÞ�, treat ŷðxÞ as random, and compute
the mean squared error of this predictor averaged over the
random process. The best linear unbiased estimator
(BLUE) is obtained by choosing the ns · 1 vector, c(x), to
minimize mean squared error,

MSE½ŷðxÞ� ¼ E½c0ðxÞy� yðxÞ�2. ð6Þ

That is,

MSE½ŷðxÞ� ¼ ðc0ðxÞFb� f 0ðxÞbÞ2

þ r2½c0ðxÞ;�1�
R rðxÞ

r0ðxÞ 1

� �
cðxÞ
�1

� �
. ð7Þ

For the unbiasedness constraint Fc
0
(x) = f(x) and

Rc(x) � r(x) � Fk(x) = 0,

0 F0

F R

� � �kðxÞ
cðxÞ

� �
¼

fðxÞ
rðxÞ

� �
. ð8Þ

So, Kriging estimates, ŷðxÞ, of the response y(x) at untried
values of x are given by

ŷðxÞ ¼ ½�k0ðxÞ; cðxÞ�
0

y

� �
¼ f 0ðxÞ~bþ r0ðxÞR�1ðy� F~bÞ;

ð9Þ
where b̂ ¼ ðF0R�1FÞ�1

F0R�1y is the usual generalized least
squared estimate of b, y a column vector with responses
of x1; . . . ; xns and f a column vector of length ns which is
filled with ones. Assuming the Gaussian process, the likeli-
hood is a function of the b’s, variance r2 and correlation
parameters. Given the correlation parameters, maximum
likelihood estimator of r2 is defined as

r̂2 ¼ ðy� F~bÞR�1ðy� F~bÞ=ns. ð10Þ
With the definitions of ~b and r̂2, the problem is to maxi-
mize the following equation:

uðhÞ ¼ �ðdet RÞ1=ns r̂2; ð11Þ
which is a function of only the correlation parameter and
the data. While any values for the h ¼ ðh1; . . . ; hndv

Þ in
Gaussian correlation function create an interpolative
approximation model, the best Kriging model is found by
solving the unconstrained nonlinear optimization problem
given by Eq. (11).

3. Optimization of heat sink

3.1. Physical specification of plate-fin type heat sink

The thermal system under consideration consists of
duct, heat sink, and reactor and it is illustrated schemati-
cally in Fig. 1. Air induced by axial fan with constant tem-
perature passes the duct and enters the channels formed by
adjacent fins and heat sink basement. Finally, heated air,
which absorbs the heat from the heat sink, flows out
through exits located top wall of the reactor part.

The circulated figure in Fig. 1 depicts the detailed phys-
ical configuration of the plate-fins heat sink schematically
because the objective of this study is to optimize the heat
sink shape for the high performance of the fan-driven heat
sink. The heat sink is made of aluminum and the fins are
fabricated by extruding technique. The overall dimensions
of heat sink are a length L = 430 mm, a width of
W = 188 mm, and a height of H = 65 mm. Noting that
the height of the heat sink (H) is sum of the fin height (h)
and base thickness of heat sink (t). Two heat sources
(Q1 = 348 W, Q2 = 321 W) with projected heating areas
of dimensions of 62 · 122 mm, which are mounted on the
top wall of heat sink, uniformly generate the heat by two
different electric resistance heaters. A full-span vortex gen-
erator perpendicularly to the flow direction is mounted on
the bottom wall of heat sink and it is located between two
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heat sources. The air deflector has a triangular cross-
section.

3.2. Mathematical formula for optimization

Optimization is to find the values of the design variables
that minimize or maximize the objective function numeri-
cally while satisfying the constraints. Thus, optimization
problems are made up of the following basic ingredients:
design variable(s), objective function(s), constraint(s), and
side constraint(s).

3.2.1. Objective function

For a given operating condition of a fan, increasing the
heat transfer rate, however, is accompanied with increasing
the pressure drop as a necessity. It is obvious that a high
thermal performance (or cooling efficiency) can be
obtained both by minimizing the thermal resistance and
the pressure drop. Thus, the pressure drop (DP) and the
thermal resistance (hj = DT/Q = [Tmax � T1]/Q) have been
generally adopted as the objective functions to be mini-
mized in many industrial applications. Here DT is the tem-
perature rise, Tmax the junction (or maximum) temperature
of heat sink, T1 the ambient temperature, and Q the heat
generated. In a practical situation for a heat sink design, it
is generally required that the maximum temperature (or
temperature rise, DT) should be maintained under the
desired one. Thus, the maximum temperature (or DT) is
used as one of the constrained conditions and the pressure
drop is adopted as an objective function only in this study.

3.2.2. Design variables

The geometric parameters which strongly influence the
thermal performance of the heat sink are the base-part
fin width (B1), lower-part fin width (B2), and base thickness
of heat sink (t), as depicted in Fig. 1. Thus, three design
variables are considered in this study: x1 = B1, x2 = B2,
and x3 = t (i.e., x = [B1,B2, t]).

The nonlinear, constrained optimum design problem
considered in this study can be expressed mathematically
as follows:

Find

x ¼ fB1;B2; tgT ð12Þ
to minimize

yðxÞ ¼ DP ð¼ P in � P outÞ ð13Þ
subject to

g1 ¼
DT

ðDT specificÞ
� 1 6 0; g2 ¼

B2

B1

� 1 6 0; ð14aÞ

1:25 6 B1 6 5:0 mm, 1:25 6 B2 6 5:0 mm,

7:0 6 t 6 25:0 mm, ð14bÞ

where x represents the design variable vector, y(x) is the
objective function which depends on x, and gj(x) denotes
the inequality constraints.
3.3. Flow and thermal fields

The physical problem considered in this study is the
three-dimensional turbulent mixed convective flow and
heat transfer of steady and incompressible fluid. The fluid
properties are taken to be constant except for the density
in the buoyancy terms of the momentum equation. The
effects of viscous dissipation and radiation heat transfer
are assumed to be negligibly small. Due to the symmetric
geometry, the computation is only carried out one half of
the physical domain. Using the above-mentioned assump-
tions, the following Reynolds-Averaged Navier–Stokes
(RANS) equations based on the standard k–e turbulent
model [15,16] for mass, momentum, and energy are solved.

oðqujÞ
oxj

¼ 0; ð15Þ
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We use the following boundary conditions to predict the
flow and thermal fields in thermal system including the heat
sink: the coolant of a constant temperature (Tin = 318 K)
induced by axial fan enters the system with a constant
velocity (uin = 1.27 m/s) and a swirl condition of 60 rad/s.
The corresponding turbulent kinetic energy and its dissipa-
tion rate are calculated from the following formula:
kin ¼ 1:5I2

0u2
in, ein ¼ k3=2

in =Le, where the local turbulence
intensity, I0 is assumed to be 0.1 and Le is a length scale
for dissipation, taken here as 80 mm (fan width). The pres-
sure boundary condition is imposed at the outflow plane.
For the other variables, the Neumann condition is
employed. A no-slip boundary condition for all solid walls
is assigned for velocity. For the turbulent kinetic energy
and its dissipation rate, the wall function based on empir-
ical wall law is employed. At the heat sink walls, the follow-
ing thermal boundary conditions are imposed; two different
heat fluxes are uniformly applied to the heat sink at the top
wall of the heat sink by two heat sources. At the side wall
and the top wall except for heat sources, the convective
boundary condition is used (h = 3 W/m2 K). At the bottom
wall of heat sink, the adiabatic condition is adopted. The
solid walls of the duct and reactor are assumed to be adia-
batic. Symmetric conditions are imposed for all dependent
variables at the plane of symmetry. The solutions are trea-
ted as converged ones when the sum of residual and the
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Fig. 2. Procedure for obtaining the Kriging correlation coefficients.
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relative deviation of dependent variables between consecu-
tive iterations are less than 10�5.

3.4. Numerical analysis

The governing equations for three-dimensional turbu-
lent flow and thermal fields are solved using FLUENT
which is a commercial finite volume CFD code [17]. The
SIMPLE algorithm [18] is used to calculate the pressure
correction equation in the momentum equation. The power
law scheme is employed for the treatment of convection
and diffusion terms. The number of cells for the computa-
tional domain has to be given sufficiently large (for baseline
geometry, its number is around 1,300,000 cells) by consid-
ering the fine grid system at solid–gas interfaces.

4. Numerical methodology

In order to obtain the optimal values of the design vari-
ables for a plate-fin type heat sink by integrating the CFD
and Kriging method, the sampling points are selected first
and then the values of objective function, which are corre-
sponded to them, are calculated by analyzing the flow and
thermal fields of heat sink. The Kriging correlation coeffi-
cients are estimated using the sampling points and the
response values. Finally, the optimal values can be
achieved by adopting the completed model. In this study,
the brief explanation for overall procedures is discussed
below.

4.1. Selection of sampling points

For performing the optimization by Kriging method,
some experimental points have to be selected by a design
of experiments (DOE). In computer experiments, it is well
known that the use of DOE, which is satisfied the concept
of space filling, gives one confidence because it can be infil-
trating the design space well. Therefore, Kriging method is
more suitable than the classical ones such as a central com-
posite design (CCD) [19] and Box–Behnken [20]. In this
study, the DOE we used is Latin Hypercube design
(LHD) [21], which is known as the effective sampling
method in DACE.

Latin Hypercube design is the method that arrays the
experimental points by generating a matrix with ns rows
and ndv columns, where ns is the number of levels being
examined and ndv is the number of design variables. The
advantage of LHD appears when the output is dominated
by only a few of the components of input variable like this
study. This ensures that each of those components is repre-
sented in a fully stratified manner, no matter which compo-
nents might turn out to be important.

4.2. Calculation of objective function

Once the sampling points are selected by the Latin
hypercube design method, the objective function should
be calculated by analyzing the flow and thermal fields of
heat sink as discussed in Section 3.3.

4.3. Estimation of correlation coefficient

To solve the unconstrained nonlinear optimization
problem in Eq. (11), we adapted the genetic algorithm
[22] method, which is an adaptive heuristic search algo-
rithm premised on the evolutionary ideas of natural selec-
tion and mutation. In many problems, it does not only
provide an alternative method to solve the problem, but
also consistently outperform other traditional methods in
most of the problems link.

Fig. 2 presents a flow chart of genetic algorithm for esti-
mating an optimal correlation coefficient in coefficients of
Gaussian correlation function. To estimate an optimal cor-
relation coefficient, data firstly has to be collected. Next,
each initial chromosome is composed of a uniformly ran-
dom number with length (ndv · ‘‘the number of decimals’’).
This is substituted with a set of decimal number with length
ndv, which is the very candidate of h ¼ ðh1; . . . ; hndv

Þ. Then,
the distance between the two observed points xi and xj are
calculated. Next, b̂ and r̂ can be calculated by using this
correlation matrix, and the values of u(h) in Eq. (11) are
evaluated and compared with each other. In the last stage,
selection, crossover and mutation process in genetic algo-
rithms are applied to generate the new chromosomes.
The optimal correlation coefficient h ¼ ðh1; . . . ; hndv

Þ is
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Fig. 3. Procedure for obtaining the optimal level of Kriging.

Table 1
Maximum temperature (Tj) and pressure drop (DP) for the cases of with
and without air deflector

w/o air deflector w/ air deflector

Maximum temperature, Tj (K) 366.48 362.31
Temperature rise, DT (K) 48.48 44.31
Pressure drop, DP (Pa) 38.15 41.29
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updated continuously until the iteration number is reached
at its maximum one (i.e., 100,000).

4.4. Approximate optimization

Simulated annealing (SA) [23] is a technique for combi-
natorial optimization problems, such as for optimizing of
very many variables. The concept is based on liquid freez-
ing or metal crystallizing in the process of annealing. In the
cooling process, the system becomes more ordered and
approaches a frozen ground state, that is, lowest energy
state. If the initial temperature of the system is too low
or cooling is done insufficiently slowly the system may
become quenched forming defects or freezing out in
meta-stable states. That is, SA is a technique to find a best
solution with a slower cooling schedule and probabilistic
computational process.

Fig. 3 shows a procedure of simulated annealing to find
an optimal level in design space by using Kriging estimate.
After the optimal correlation coefficient, h ¼ ðh1; . . . ; hndv

Þ,
is determined with the genetic algorithm in Section 4.3,
Kriging estimate values of all points in design space can
be calculated by Eq. (9). Now, a point x in design space
is selected and its Kriging estimate value is calculated.
Then, x* is selected by perturbing x and its Kriging esti-
mate value is calculated. In the last stage, of the two points,
one point remains on the annealing schedule. When a ter-
minate condition is satisfied, this process is completed with
an optimal level.

5. Results and discussion

The optimal values of the design variables in plate-fin
type heat sink are numerically acquired by using the
CFD and Kriging method. At first, the sampling points
are calculated by considering the upper/lower limits of
design variables and they are used for optimization.
5.1. Effect of air deflector

In order to investigate the effect of air deflector on the
flow and thermal characteristics of heat sink before the
optimization is carried out, we compare them for the cases
of with and without air deflector and the results calculated
are listed in Table 1. Table 1 presents the maximum tem-
perature (Tj), temperature rise (DT = Tj � T1) and pres-
sure drop (DP) for two cases. In the table, all operating
conditions and geometric configurations are same as the
baseline geometry. Air deflector has a triangular cross-sec-
tion of 20 mm and a width of 188 mm, as shown in Fig. 1.
As can be seen in Table 1, for the case of with air deflector,
the maximum temperature is predicted as 362.3 K and is
reduced by 4.2 K compared to that of without air deflector,
while the pressure drop is increased from 38.15 Pa to
41.29 Pa. These phenomena can be simply explained by
the following two facts; the breaking the thermal boundary
layer and the increasing the flow resistance, respectively, by
the existence of air deflector. From the flow and thermal
analyses of system, it can be found that maximum temper-

ature is occurred at the rear-heat source (i.e., Q2 = 321 W).
From now on, all results obtained are those of with air
deflector. Table 1 also illustrates that the temperature rise
of 44.31 K is exceeded the general desired temperature rise
of 40 K which is corresponding to the maximum tempera-
ture for safe operating of thermal system. This means that
the plate-fin type heat sink must be optimized for the ther-
mal stability.

5.2. Optimal solutions

Table 2 shows the sampling points selected by using the
LHD method. In this case, they are selected according to
the upper and lower limits of the design variables, which
is defined in Eq. (14b). In this study, the number of sam-
pling points are determined as 30 (that is, 10 Æ ndv) by con-
sidering the accuracy and efficiency of the metamodel. In
order to optimize the shape of heat sink, the pressure drop
and maximum temperature in the heat sink should be pre-
dicted for each selected sampling point and their values are
listed at columns of 5 and 6 in Table 2. Because the optimi-
zation problem considering this study is minimized the
pressure drop while the maximum temperature is satisfied
within the desired one, the correlation coefficients are cal-
culated using the pressure drop and maximum temperature
in Table 2 and then the optimal solutions are estimated by



Table 2
Sampling points and corresponding to values of performance functions

No. x1 x2 x3 DP Tmax

1 3.8708 5.0042 8.7333 153.114 352.644
2 2.7375 4.7208 10.6 95.886 354.431
3 3.7292 2.1708 9.5333 77.886 355.088
4 3.1625 3.1625 14.0667 96.015 354.792
5 4.2958 2.4542 14.8667 135.821 353.879
6 2.0292 1.4625 8.2 39.376 359.663
7 1.6042 3.8708 7.1333 49.263 358.439
8 1.7458 2.8792 8.4667 45.474 358.562
9 1.8875 3.3042 11.1333 56.801 357.147

10 1.4625 1.3208 10.8667 38.071 360.702
11 2.4542 4.8625 7.9333 81.395 355.311
12 4.7208 3.0208 9.0 134.122 352.999
13 4.8625 1.6042 10.3333 110.843 354.079
14 5.2875 4.0125 9.8 238.381 351.473
15 5.4292 3.4458 13.2667 262.828 351.819
16 3.0208 2.7375 7.4 62.150 356.144
17 2.1708 4.4375 14.3333 87.141 355.406
18 4.1542 5.1458 13.5333 218.612 351.982
19 4.4375 1.7458 13.0 112.419 354.332
20 2.5958 2.5958 10.0667 59.462 356.531
21 2.3125 2.0292 12.4667 56.498 357.402
22 4.5792 5.2875 11.4 266.645 351.377
23 5.0042 1.8875 7.6667 109.035 354.027
24 3.3042 3.7292 9.2666 90.089 354.328
25 3.4458 2.3125 11.6667 80.562 355.188
26 3.5875 3.5875 11.9333 109.345 353.803
27 1.3208 4.2958 12.7333 60.872 357.451
28 2.8792 5.4292 12.2 127.800 353.728
29 4.0125 4.1542 14.6 167.697 352.857
30 5.1458 4.5792 13.8 322.814 351.347

Table 3
Initial and optimized designs for DT < 40 K

Initial Optimal

B1 (mm) 2.0 2.44
B2 (mm) 1.5 2.09
t (mm) 7.0 7.58

Thermal resistance, hja (K/W) 0.066 0.059
Pressure drop, DP (Pa) 41.29 45.54
Max. temperature, Tmax (K) 362.31 357.99
Temperature rise, DT (K) 44.31 39.99
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the Kriging method. Therefore, the optimal values of the
heat sink strongly depend on the values of DP and Tmax.

To explain the typical results for optimization, the initial
and optimized designs for the temperature rise of 40 K are
listed in Table 3. When minimizing the pressure drop in the
heat sink, it is important to restrict the temperature rise
which is the most important operating factor for the ther-
mal stability of heat sink. As shown in Table 3, the opti-
mized thermal resistance of 0.059 K/W represents a
reduction of 10.6% compared to the initial thermal resis-
tance of 0.066 K/W due to the decrease of temperature rise
(4.3 K). However, the optimized pressure drop is increased
by 10.3% from 41.29 Pa to 45.54 Pa. It can be also seen
from Table 3 that the optimal values of all design variables
are increased compared to those of the initial variables.
Table 4
Correlation coefficients (h = h1,h2,h3) and optimal solutions for various maxim

Tmax [K] h

DP Tmax

355 [2.402,1.111,0.101] [1.280,0.088,0
356 [2.468,1.085,0.103] [1.361,0.213,0
357 [1.996,1.023,0.077] [1.013,0.102,0
358 [2.168,0.963,0.074] [1.145,0.145,0
359 [1.789,0.893,0.061] [1.028,0.150,0

xopt = [B1,B2, t]opt.
Especially, B1 and B2 are thickened by 22% and 39.3%,
respectively, compared to the initial value and it is obvious
that they are the most important variables to enhance the
thermal performance of heat sink. This is due to the fact
that the velocity in flow passage formed by adjacent fins
should increase to reduce the temperature rise (that is,
enhance the heat transfer rate) and it results in the increase
of pressure drop.

Table 4 shows the correlation coefficient (h) which can
be obtained by maximizing the likelihood function (u(h)),
the optimal values (xopt), and objective function (DPmin)
according to the desired maximum temperature (Tmax).
The correlation coefficient of h ¼ ðh1; . . . ; hndv

Þ is corre-
sponding to the design variables of B1, B2 and t. It can
be seen in Table 4 that different optimal values are obtained
according to the desired maximum temperature and they
cause to change the objective functions (DPmin). If the
value of required maximum temperature is small
(Tmax = 355 K), the larger values of the design variables
are acquired compared to that of large Tmax and they are
also plotted in Fig. 4 in order to explain variations of the
optimal design variables for five different temperature rises.
These phenomena result from the following reasons; for a
fixed volume of heat sink (L · W · H = constant), increas-
ing the design variables retards the development of the
thermal boundary layer. It results in the thinner thermal
boundary layer and the larger friction loss due to the
increased velocity. Thus, the maximum temperature is
reduced and the pressure drop is increased as the design
variables are thickened as shown in Table 4.

A set of optimal solutions for the objective function can
be constructed so that the designer can select the preferred
solution based on Table 4. For this purpose, the relation-
ship between the pressure drop (Dp) and the temperature
um temperatures

Optimal

xopt DP

.141] [3.462,2.852,8.489] 76.86

.168] [3.110,2.498,8.298] 62.07

.120] [2.766,2.260,7.955] 53.05

.137] [2.443,2.091,7.582] 45.54

.122] [2.174,1.935,7.117] 40.23
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Fig. 4. Variations of optimal design variables for maximum temperature.

Table 5
Accuracy and efficiency of Kriging method compared to SQP method

DT a DP [Pa] NFCb

Kriging SQP [24] Kriging SQP [24]

37 76.86 N/A 30 N/A
38 62.07 62.11 67
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rise (DT) is illustrated in Fig. 5. The points on the curve
from (a) to (e) are one of the optimal solutions. The results
can be very helpful to designers in order to achieve the opti-
mization of the heat sink. For example, when designers
want to focus on decreasing the thermal resistance rather
than decreasing the pressure drop, they can select the
points such as (a) or (b) on the curve of Fig. 5 and then
read the corresponding optimal design variables in Table
4. For the thermal management of the heat sink, it is
important to remark that the most important goal is to
maximize the heat transfer rate or minimize the thermal
resistance and this is easily achieved by the increase of
the velocity between fins and the heat transfer area. How-
ever, the minimized pressure drop is strongly related to the
specific cost, because the pressure drop determines the size
of the fan needed to blow the cool air through the channel.
Therefore, choosing one of the optimal solutions in Fig. 5
is dependent on the heat sink designers.

Main difficulty faced by numerical analysis of fluid flow
and heat transfer using the finite volume method (FVM)
is caused by the requirement of much computational cost.
Thus, for the optimization of fluid/thermal systems,
enhancement of the efficiency which can reduce the overall
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Fig. 5. Temperature rise vs. pressure drop.
CPU time for optimization process becomes very impor-
tant issue which has to be resolved rather than improve-
ment of the accuracy of optimal solutions. In the present
study, in order to investigate the accuracy and efficiency
of the Kriging method, we compare the objective function
and NFC with those of SQP method for the same geomet-
ric configuration, which is reported in Ref. [24]. The
‘‘NFC’’ is the ‘‘Number of function calls’’ and it implies
the total number of flow and thermal analyses required
(or total number of changes of design variables proposed
by optimizer) throughout the optimization process. Table
5 shows that the objective function for the Kriging method
has lower values than that for the SQP method for all tem-
perature rises. For the NFC, overall computational time
for optimization of the Kriging method is just 16% of
SQP method (that is, total NFC for the Kriging and SQP
methods are 30 and 180, respectively). From these two
facts, it is clear that the Kriging method is superior to
the SQP method within the range of this study.

Actually, the optimal values and their corresponding
objective function which can be obtained by the Kriging
method must be estimated ones. Therefore, the values of
objective function (DPmin) should be checked in order to
validate the Kriging method. For this, the estimated and
calculated values of objective function according to the
optimal design variables are presented in Table 6. The
meaning of ‘‘calculated’’ is values obtained by analyzing
the flow and thermal fields in the heat sink by the compu-
tational fluid dynamics. Table 6 shows that the estimated
values DPmin are very good agreement with those of calcu-
lated. That is, for DT < 37 K , the estimated value by the
Kriging method and calculated one by CFD are 76.86 Pa
39 53.05 53.36 51
40 45.54 46.72 42
41 40.23 41.94 21

Total 30 181

a DT = Tmax � T1 = (Tmax � 318) K.
b NFC: number of function calls.

Table 6
Validation of optimal results for Kriging method

DT xopt DP [Pa]

Kriging CFD

37 (3.462,2.852,8.489) 76.86 76.94
38 (3.110,2.498,8.298) 62.07 62.43
39 (2.766,2.260,7.955) 53.05 53.94
40 (2.443,2.091,7.582) 45.54 46.79
41 (2.174,1.935,7.117) 40.23 41.81

xopt = [B1,B2, t]opt.
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and 76.94 Pa, respectively, and the difference is just 0.1%,
while DT < 41 K is 3.8%. It can also be seen in Table 6 that
the difference between estimated and calculated values is
reduced as the temperature rise is decreased. From the
results of Tables 5 and 6, it can be easily concluded that
the Kriging method, which is one of the global approxi-
mate optimization techniques, can optimize the heat sink
efficiently and accurately.

6. Conclusions

We numerically obtained the optimum design variables
of a plate-fins heat sink to minimize the pressure drop while
the desired maximum temperature is satisfied. The thermal
and flow characteristics were analyzed using the finite vol-
ume method. The Kriging method, which is one of meta-
models, was used for completing the optimization. As the
results of optimization, the following conclusions were
obtained: the most dominant design variables for the pres-
sure drop and thermal resistance were the base-part fin
width (B1), and the lower-part fin width (B2), while the
effect of base thickness (t) on them was relatively small
compared to the other two design variables. The results
also showed that the optimal design variables for the tem-
perature rise of 40 K were B1 = 2.44 mm, B2 = 2.09 mm,
and t = 7.58 mm. In this case, the thermal resistance for
the optimum model was decreased by 10.6%, while the
pressure drop was increased by 10.3% compared to those
of the initial model. It was also found that the Kriging
method can be a popular technique by comparing with a
local optimization technique for its accuracy and efficiency.
The results of this work can offer designers the information
they need to select the optimal design variables correspond-
ing to the preferred objective functions.
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